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LETTER TO THE EDITOR 

Polarons in 
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Abstract. We show that broken cp: in a constant external field has the same polaron 
solutions as  when coupled supersymmetrically to fermions. We use this to derive a 
mean-field scheme that yields the exact solution to the classical equations of the fermion- 
boson system. We explain the occurrence of similar solutions in the two theories by means 
of inverse-scattering arguments and comment on applications to polymer models. 

Polarons (bounces) are non-topological solitons. They can be viewed as kink-antikink 
pairs emerging as exact solutions of nonlinear equations and can be found in two- 
dimensional models used in particle [l-41 and condensed matter [5-81 physics to 
describe the interaction of fermions and bosons. Although numerical calculations 
suggest that they exist for a variety of values of the couplings involved, analytic 
solutions have been obtained for a special relation between Yukawa and scalar 
couplings. In [8] it was shown that, if that relation holds, an infinite number of scalar 
Lagrangian densities, Yukawa coupled to fermions, will admit them as solutions to 
their coupled equations of motion. It turns out that, for the simple choice of a broken 
cp: Yukawa coupled to (Majorana) fermions, this relation corresponds to the supersym- 
metry condition and yields the Wess-Zumino [9] model. As a result, polarons are 
extrema for the Wess-Zumino model in its simplest version and should be considered 
in semiclassical computations. 

However, they can appear in a much simpler situation: as exact solutions to the 
equation of motion of broken cp: coupled to a constant external current [ 10-121. Indeed, 

has a time-independent solution. Consider the first integral of (1) for a static field 

This is just the expression of energy conservation for a point particle at position cp, 
evolving in a ‘time’ given by the spatial coordinate, x. The potential, in our mechanical 
analogue, is minus the scalar potential 
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i.e. a double well with asymmetric minima; turned upside down, it has the shape of 
the Sugar Loaf. Denoting global and local minima by cp, and cp2, respectively, we 
shall be interested in a solution satisfying cp = cp2 and cp' = 0 at x = i o o .  This allows us 
to compute E. Furthermore, since cp2 is a minimum, we obtain j as a function of cp2.  
Equation ( 2 )  can, then, be written in terms of cpo, cpz and A and integrated. After some 
algebra, we obtain 

where cpp = d(3cp; - c p 3 / 2  and also 

The integration constant, X ,  is arbitrary and defines the position of the centre of the 
polaron. The quantity xo = so(mcpp) is half the distance between the centres of the 
kink and antikink that make up the polaron. Equation (4) has the same functional 
form as the polaron solutions mentioned in the introduction. 

We can now use this last observation to deal with the equations of motion of broken 
cpi (the a-model), Yukawa coupled to fermions. The Lagrangian density 

leads to the coupled system 

a,apcp + Acp(cp2-  cpi) = -g&4 (7) 

(iy"d, -gcp)$ = 0. (8)  
We can try a mean-field-type approach by replacing the LHS of (7 )  with a constant, 
( - j ) .  We may, then, use the results of the previous paragraph and solve for cp. This 
can now be inserted in (8). The result (equation (4)) can now be inserted in (8). Since 
our scalar field is static, we obtain HD5 = -wJ, $( t, x) = e-""'l(x) and 

where we have used the Weyl representation for the Dirac matrices. If we square the 
Hamiltonian, we obtain two Schrodinger equations which are related to each other. 
The problem is effectively one dimensional and can be viewed as an example of 
supersymmetric quantum mechanics: the operators DD' and D'D have the same 
spectra except, possibly, for eventual zero eigenmodes. They are of the form 

1 d2 [ dx2 
--+g2(cp:-2cpi)+ C'," tanh2(5+)+ CL-) tanh2(5-) U, = w2u,  (10) 

with & = 5 f to and the remaining f subscripts denoting each Schrodinger equation. 
The constants C y )  (subscript denotes equation) obey 

cl" = c ?)  = ( g  m ) g c p ; .  (11) 
If we now impose the relation A = 2g2,  there will be a decoupling of the variables [+ 

and we end up with two independent Poschl-Teller potentials. They are exactly solvable 
[ 131, with bound states given by 

(12) U* = N ,  sech( &) 
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where N ,  are normalisation constants. The corresponding eigenenergies are 

From the solutions of two Schrodinger problems we may reconstruct the bound states 
of the Dirac equation by using the Hamiltonian (9) 

1 (+=(U-, -- w Du+ 5- = (-- w D U-, U- 
l )  

1 ,  

- 
where w stands for J w ’ .  Thus, there exist two charge-conjugate bound states, with 
energies iw, whose wavefunctions are respectively given by 

with NN* =fm~, to account for normalisation. We may now feed those states 
back into the RHS of (7) and proceed to a second iteration of our method. Although 
the RHS is no longer a constant, it is closely related to our initial ansatz for Q 

g 
2 sinh(25,) 

&+$+ = 2NN* sech([+)sech( 5- ) = - ( Q  - 9 2 ) .  

Using this, we may rewrite (7) in the form of (1) by changing the values of mass and 
current. Equation (7) will then have a solution of the same form as before, but with 
a different set of parameters. All one has to do is to replace gc2, gc, and 5, by new 
values G 2 ,  4, and io, keeping the same value for g (and A = 2g2), in (4). Substituting 
into (7) ,  one obtains 

&-&pi = 0 (17) 

From those, we obtain 

There are two possible solutions, corresponding to fermion bound states of energies 
satisfying w 2  = g2@i. They are the same as the ones found in [2] by inverse-scattering 
methods. There, it was shown that only the solution with the plus sign in (20) is stable. 
The other decays into a kink-antikink pair. The fermion bound states come out of 
the solution of the Dirac equation, which can be obtained as before. Our iterative 
procedure converges in its second iteration, as a consequence of the relation A = 2g’. 

Apart from assuring the convergence of our procedure, the relation between the 
couplings is equivalent to the supersymmetry condition for the fermion-boson model. 
Indeed, the underlying quantum mechanical supersymmetry, which relates the spectra 
of our two Schrodinger operators, leads to a self-conjugate spectrum for the Dirac 
equation. That allows us to work with Majorana fermions (note that only the positive 
energy state was used in (7)) .  Together with the condition on the couplings, this results 
in a Lagrangian density which can be rewritten in the form 

y w z  = ;aa,cpaa,.cp + WrP) + i[ir”a, - U’(Q)I$ (21) 
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where U( p) = (g2/2)( p2 - pi)2. One immediately recognises the Wess-Zumino 
Lagrangian in two dimensions. 

It remains to explain why a constant external current induces the same form of 
solution as the richer model with fermion interactions. This can be best understood 
in the language of inverse scattering. It suffices to know that the Lagrangian leading 
to (1) can be completely written in terms of scattering data for an auxiliary Dirac 
problem, whose Yukawa potential is the scalar field. Indeed, 

with V defined in (3), yields a Lagrangian that can be written as 

where the Li can then be expressed as [8] 

L, = +m dx [ (2) + g’( p2 - p:)’] 
-m 

with (K , ) ’+  g’p: = 02. The expression for P*( q )  = ln(l T,( q)12) depends on the trans- 
mission coefficients, T, (q ) ,  associated with the Dirac equation. They admit an integral 
representation [ 141 

Note that we subtract an infinite constant from the Lagrangian so as to set it to zero 
at the boundary value p2. Extremising the action with respect to scattering variables 
does yield the condition that the potential of the Dirac equation should be reflectionless. 
This is equivalent to the relation A = 2g’ and guarantees the existence of polaron 
solutions of the form shown in (4) (see [ l -4 ,7 ,8] ) .  It is the same strategy used in 
proving the existence of polarons in fermion-boson models, where the fermionic 
contribution can also be expressed in terms of scattering data and is also extremised 
by reflectionless potentials. It should, thus, be no surprise that the two systems have 
solutions of the same form. 

The results we have described find an interesting application in the physics of 
polymers. It was shown in [SI that the models of [ 5 ]  and [6] both had polaron solutions 
because the valence welectrons of the former, when integrated out, generated an 
effective phonon potential with the characteristics of that of the latter. Thus, to derive 
polaron solutions, we could do away with valence electrons, modify the phonon 
potential and only keep the mid-gap (bound) states. We now see that a further reduction 
is possible, which replaces those remaining fermion states with a constant (mean-field) 
external current and still preserves the polarons. In fact, this observation was recently 
used [ 151 to construct approximate solutions to coupled QCD equations that bear a 
striking resemblance to those of polymer models. Furthermore, the role of the relation 
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between couplings, which allowed for the construction of explicit solutions, presents 
us with an example of an effective supersymmetric model that describes fermion-boson 
dynamics and possesses classical solutions which, to our knowledge, have not been 
explored before. 

This work is partially supported by CNPq and FINEP. 
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